A Peroxy-radical of Chlorine, Cl·O·O

By R. S. EACHUS, P. R. EDWARDS,* S. SUBRAMANIAN, and M. C. R. SYMONS

(Department of Chemistry, The University, Leicester)

We report the partial characterisation of a new paramagnetic oxide of chlorine, Cl·O·O. The electron spin resonance parameters of this radical have been measured, and will help to establish the nature of its electronic structure, and its relationship with the isoelectronic fluorine species, F·O·O.

A number of paramagnetic oxides of chlorine have been prepared and stabilised in the solid state by irradiation of chlorates and perchlorates. The nature of the products of X- or γ -irradiation is often temperature dependent, for example radiolysis of KClO₄ at 295° κ produces both ClO₃ and ClO₂,^{1,2} and at $77^{\circ} \kappa \text{ClO}_{4.3}$ At $190^{\circ} \kappa$, a chlorine species is obtained which decays at room temperature to ClO₂.⁴ Ultraviolet photolysis⁴ of ClO₂ in KClO₄ at 295° K resulted in the loss of electron spin resonance absorption (other than that from the O_3^- ion). We now find that if, after photolysis, a crystal of KClO₄ is cooled to below about 100° K, signals from a new paramagnetic chlorine species appear. On standing at 295° K these disappear and, at the same time, the electron spin resonance absorption of ClO₂ reappears, the process being complete after about two days. This sequence is reversible so that the reaction scheme can be formulated;

 $\mathrm{KClO}_{4} \xrightarrow[195^{\circ} \kappa]{} \mathrm{KClO}_{4} \xrightarrow[295^{\circ} \kappa]{} \mathrm{KClO}_{2} \xrightarrow[4]{} \mathrm{KClO}_{2} \xrightarrow[$

Although the identification is not completely certain, strong features associated with A in a powered sample of $KClO_4$ can be seen in a freshly irradiated powder, together with features due to other radicals, represented by B.

Electron spin resonance powder spectra of A at 77° κ , at both X- and Q-band frequencies, have been measured and show that the radical possesses considerable anisotropy. The parameters have been obtained by measuring the electron spin resonance spectra of A in a single crystal of KClO₄ at 77° κ , in three orthogonal planes. The following principal values of the g- and A-tensors were obtained after diagonalisation;⁵

$g_{11} = 1.9983$	$A_{11} = 5.3$ gauss
$g_{22} = 2.0017$	$A_{22} = 7 \cdot 2$ gauss
$g_{33} = 2.0130$	$A_{33} = 14.9$ gauss

It has not been possible to determine a_{1so} independently, with the result that the signs of A_{11} etc. are not known.

The powder spectra of A (when signals arising from O_3^- have been subtracted) closely resemble those from a glass of ClO_2 in H_2SO_4 which has been subjected to ultraviolet photolysis at 77° κ . In the H_2SO_4 matrix the radical was originally presumed to be ClO, although difficulty was experienced in attempts to accommodate the data fully.² One of us has since suggested⁶ that the species in H_2SO_4 is Cl·O·O, the dioxygen monochloride or "chlorine peroxide" radical. We have been encouraged in supposing that the radical in both H_2SO_4 and KClO₄ (A) is Cl·O·O for the following reasons:

- (i) The hyperfine interaction tensor of A is similar to that in F·O·O,⁷ indicating that the spin density on Cl in A is comparable with that on F in F·O·O, *i.e.*, of the order of 10%.
- (ii) The g-tensor resembles that in a number of other triatomic, nonlinear, 19-electron molecules,⁹ such as ClO₂, O₃⁻, and NO₂²⁻ in addition to F·O·O. Thus (i) and (ii) indicate that A and F·O·O have a similar structure.
- (iii) Rochkind and Pimentel⁸ have made the tentative proposal that Cl·O·O, produced by ultraviolet photolysis of ClO₂ in a rigid matrix, is responsible for a number of infrared absorption bands. We have detected a similar infrared spectrum after photolysis of ClO₂ in CCl₄ at 77° κ .

We have also confirmed Norman and Porter's observation¹⁰ that an intense absorption in the 260 m μ region appears after photolysis of ClO₂, which is characteristic of ClO. An additional shoulder was detected at about 380 m μ , and, by comparison with the optical spectra of O₃⁻ (440 m μ) and ClO₂ (340 m μ), this is tentatively attributed to Cl·O·O. ClO shows no detectable electron spin resonance absorption at 77° K, probably because of very rapid relaxation linked with the very strong dependence of the absorption on the "crystal field" of its environment.

We conclude that photolysis of ClO_2 in rigid media leads to (a) partial decomposition to ClO, and (b) partial isomerisation to Cl·O·O, possibly by a cage back-reaction, this latter reaction being readily reversed.

Acknowledgement is made to the Ministry of

Technology and to the Science Research Council for their support of this work.

(Received, August 23rd, 1967; Com. 907.)

¹ T. Cole, Proc. Nat. Acad. Sci. U.S.A., 1960, 46, 506.

 ¹ T. Cole, Proc. Nat. Acad. Sci. U.S.A., 1960, 46, 506.
² P. W. Atkins, J. A. Brivati, N. Keen, M. C. R. Symons, and P. A. Trevalion, J. Chem. Soc., 1962, 4785.
³ J. R. Morton, J. Chem. Phys., 1966, 45, 1800.
⁴ J. R. Byberg, S. J. K. Jensen, and L. T. Muus, J. Chem. Phys., 1967, 46, 131.
⁵ D. S. Schonland, Proc. Phys. Soc., 1959, 73, 788.
⁶ M. C. R. Symons, J. Phys. Chem., 1967, 71, 12.
⁷ F. J. Adrian, J. Chem. Phys., 1967, 46, 1543.
⁸ M. M. Rochkind and G. C. Pimentel, J. Chem. Phys., 1967, 46, 4481.
⁹ P. W. Atkins and M. C. R. Symons, "The Structure of Inorganic Radicals", Elsevier, Amsterdam-London-New York, 1967, cb, 9. York, 1967, ch. 9.

¹⁰ I. Norman and G. Porter, Proc. Roy. Soc., 1955, A, 230, 399.